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ABSTRACT Genome-scale metabolic models (GEMs) are widely used in systems 
biology to investigate metabolism and predict perturbation responses. Automatic GEM 
reconstruction tools generate GEMs with different properties and predictive capacities 
for the same organism. Since different models can excel at different tasks, combining 
them can increase metabolic network certainty and enhance model performance. Here, 
we introduce GEMsembler, a Python package designed to compare cross-tool GEMs, 
track the origin of model features, and build consensus models containing any sub­
set of the input models. GEMsembler provides comprehensive analysis functionality, 
including identification and visualization of biosynthesis pathways, growth assessment, 
and an agreement-based curation workflow. GEMsembler-curated consensus models 
built from four Lactiplantibacillus plantarum and Escherichia coli automatically reconstruc­
ted models outperform the gold-standard models in auxotrophy and gene essential­
ity predictions. Optimizing gene-protein-reaction (GPR) combinations from consensus 
models improves gene essentiality predictions, even in the manually curated gold-
standard models. GEMsembler explains model performance by highlighting relevant 
metabolic pathways and GPR alternatives, informing experiments to resolve model 
uncertainty. Thus, GEMsembler facilitates building more accurate and biologically 
informed metabolic models for systems biology applications.

IMPORTANCE Genome-scale metabolic models (GEMs) capture our knowledge of 
cellular metabolism as encoded in the genome, enabling us to describe and predict 
how cells function under different conditions. While several automated tools can 
generate these models directly from genome data, the resulting models often con­
tain gaps and uncertainties, highlighting areas where our metabolic knowledge is 
incomplete. Here, we introduce a new tool called GEMsembler, which integrates GEMs 
constructed by different methods, evaluate model uncertainty, and build consensus 
models, harnessing the unique features of each approach. These consensus models 
more accurately reflect experimentally observed metabolic traits, such as nutrient 
requirements and condition-specific gene essentiality. GEMsembler facilitates compre­
hensive analysis of model structure and function, helping to pinpoint knowledge gaps 
and prioritize experiments to address them. By synthesizing information from diverse 
sources, GEMsembler accelerates the development of more reliable and biologically 
meaningful models, advancing research in metabolic engineering, pathogen biology, 
and microbial community studies.

KEYWORDS metabolic modeling, genetic algorithm, Escherichia coli, Lactobacillus

G enome-scale metabolic models (GEMs) are among the fundamental tools in systems 
biology used to describe cellular metabolism and predict perturbation responses 
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(1, 2). GEMs are reconstructed based on genome annotations and represent a metabolic 
network of reactions and metabolites associated with enzymes via gene-protein-
reaction (GPR) rules. Flux balance analysis (FBA) and its variations are used to estimate 
metabolic fluxes in the network under given conditions, thus predicting growth and 
consumption and production of metabolites, while allowing integration of different 
types of experimental data to constrain the model (3, 4). The model quality is therefore 
crucial for accurate model predictions (5).

Although manual curation remains the gold standard for production of high-quality 
models (5), there are various tools for the automatic reconstruction of draft GEMs that 
utilize different approaches and can be used as a starting point (6). Some tools, like 
gapseq (7) or modelSEED (8, 9), follow a bottom-up approach by mapping enzyme 
genes found in the genome to the known reactions from the biochemical databases 
and subsequently filling the gaps to form a complete network. An alternative top-down 
approach is proposed in the CarveMe tool (10), which starts with a universal model 
from the BiGG (11) database and carves out unnecessary reactions based on the enzyme 
presence. For human gut bacteria, there is a widely used AGORA collection of semi-auto­
matically built models (12, 13), which can be downloaded from the Virtual Metabolic 
Human database (14). Each GEM reconstruction tool has its advantages, and none of the 
tools consistently outperforms the others (6).

GEMs built by different tools for the same organism often use different database 
nomenclatures, have different structures and functional performance, making a direct 
comparison challenging (3). For example, modelSEED models are built using the 
modelSEED database (8), gapseq relies on several integrated databases, including 
ModelSEED (8) and MetaCyc (15), while CarveMe uses the BiGG database (11). One 
approach for unifying nomenclature is offered by MetaNetX (16, 17), an online platform 
that connects metabolites and reactions namespaces from different databases. However, 
while comparing lists of metabolites and reactions provides an overview of models’ 
similarities, the structural and functional differences between GEMs are not revealed. 
Alternatively, one can compare models based on their functional performance, such as 
prediction of growth, auxotrophy, or gene essentiality, compared to the experimental 
data (18–22). However, this approach does not reveal the differences in the network 
structures of models constructed with different tools.

Emerging cross-tool studies (23–25) show that models built with different tools can 
capture various aspects of metabolic behavior, and therefore combining them in one 
model may improve the model performance. Several frameworks were proposed to 
merge GEMs built with different tools. For example, modelBorgifier (26) allows merging 
of two models in a semi-automated manner, while mergem (23) automatically generates 
a union model from several input GEMs containing metabolites and reactions from the 
original models. However, to date, no framework can merge all model features, including 
genes and GPRs, track the origin of each feature in the output model, and generate 
fine-tuned, flexible combinations of GEMs.

To address this need, we developed GEMsembler, a Python package for comparing, 
combining, and analyzing GEMs built with different tools. GEMsembler has the following 
unique features: (i) it enables structural comparison of GEMs built with different tools; (ii) 
it systematically assesses confidence of the metabolic network at the level of metabo­
lites, reactions, and genes; and (iii) it provides a comprehensive framework for assem­
bling different combinations of the input models and assessing their predictive capacity 
in terms of growth, auxotrophy, and gene essentiality. Furthermore, consensus models 
generated from the input GEMs can be curated using the GEMsembler functionality in a 
semi-automated manner. Using the two model organisms Escherichia coli and Lactiplan­
tibacillus plantarum (formerly Lactobacillus plantarum) as examples, we demonstrate 
that GEMsembler-curated consensus models can outperform the current gold-standard 
manually curated models in auxotrophy and gene essentiality predictions. Furthermore, 
the GEMsembler framework highlights the features that explain the improved model 
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performance, thus providing valuable information for targeted experimental validation 
to elucidate the knowledge gaps and uncertainties in metabolic networks.

RESULTS

Generating cross-tool consensus models with GEMsembler

GEMsembler assembles GEMs following a workflow consisting of four major steps: (i) 
conversion of features of the input models (metabolites, reactions, and genes) to the 
same nomenclature, (ii) combination of the converted input models into one object, 
which we refer to as supermodel, (iii) generation of consensus models containing 
different combinations of the input models’ features, and (iv) comparison and analysis of 
the consensus models (Fig. 1A; Fig. S1).

First, GEMsembler converts metabolite IDs of the input models to BiGG IDs (11) using 
different sources of information linking IDs from various databases and BiGG. Next, 
converted metabolites are used to convert reactions to BiGG nomenclature via reaction 
equations (Fig. S1) to ensure that the converted model maintains the same topology 
as in the original models. Finally, if genome sequences are provided along with the 
input models, GEMsembler converts genes from the input models to the locus tags of 
a genome selected as the output using BLAST (27) (Fig. S1). GEMsembler keeps track of 
all the intermediate conversion steps, providing the possibility to troubleshoot in case of 
conversion issues.

After performing the conversion, GEMsembler assembles all converted models into 
one supermodel (Fig. 1A; Fig. S1). The supermodel follows the structure of the COBRApy 
Python class (28), while having additional fields to store the information about the 
converted features (metabolites, reactions, or genes) and their source of origin (Fig. 1B; 
Fig. S1). Features that could not be converted are stored in a separate field (termed 
“not_converted”) in the supermodel. During the creation of the supermodel, only the 
union of the input models (termed “assembly”) is generated, which includes all features 
present in at least one model. All the other possible combinations of the input models, 
termed “consensus” models, are generated in the next workflow step. For example, we 
can generate “coreX” consensus models with features that are included in at least X 
of the input models (assembly is therefore identical to the core1 model). We define 
the feature confidence level as the number of input models that include this feature. 
The feature attributes in the consensus models are assigned according to the same 
agreement principle. For example, if a reaction is unidirectional in three out of four input 
models and bidirectional in one model, it will be unidirectional in core4, core3, and 
core2 consensus models and bidirectional in the assembly model. GPR rule attributes 
of reactions are compared based on the logical expressions involving genes from the 
original models to create new GPRs for the output consensus models. The consensus 
models are stored as a field in the supermodel object and can be extracted as separate 
models in the standard SBML format for downstream analysis with COBRA tools, such as 
flux balance analysis, gene essentiality prediction, and other functions.

Investigating the structure and functions of the metabolic network with 
consensus models

The GEMsembler supermodel consists of metabolites, reactions, and gene objects, which 
can be examined interactively, and provides information about the original models’ 
agreement on the network features, which can be used to assess their confidence 
and identify gaps that could be experimentally validated. Due to the large number 
of reactions, metabolites, and genes present in GEMs, it is challenging to identify 
subnetworks or features of particular interest for further exploration. To facilitate this 
analysis, we integrated additional functionality in GEMsembler (Fig. 1C) to systematically 
investigate the structure and functions of the metabolic network and identify subnet­
works with various levels of confidence using consensus models.

To explore the network structure, GEMsembler implements neighborhood search to 
identify all reactions at a given distance from a metabolite of interest, as well as three 
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ways of defining a pathway, for which the confidence should be assessed. First, the 
pathway can be predefined by the user (e.g., glycolysis, tricarboxylic acid [TCA] cycle). 
Second, the pathway can be calculated from the network by identifying all possible 
ways of synthesizing metabolites of interest in a given culture medium using a topology 
approach. In this approach, all possible paths (sequences of reactions) between the 
input medium components and the target metabolites are calculated by the MetQuest 
package (29) integrated into GEMsembler. This topology approach generates pathways 
that resemble classically defined biochemistry pathways, for example, in the KEGG (30) 
or MetaCyc (15) databases. While these pathways exist in the network, it is not guaran­
teed that they can carry flux, as this approach does not perform flux analysis at the 
network scale. Therefore, the third approach to determine the biosynthesis pathways is 
to perform parsimonious flux balance analysis (pFBA) (31), optimizing the production of 
each metabolite of interest while identifying the solution with the minimal flux. Once 
the pathway is defined, its confidence can be assessed by comparing the agreement 
scores for its metabolites, reactions, and the corresponding GPR rules between the input 
models. This information is provided as an output table and as an interactive pathway 
map that can be explored visually (Fig. 1C).

To investigate the model functions, GEMsembler assesses the models’ ability to grow 
in a given medium by performing FBA using biomass production as the objective 
function. Next, GEMsembler performs FBA using the production of each component 
of the biomass reaction as the objective function to identify which metabolites cannot 
be produced in case the models are not able to grow (Fig. 1C). Finally, GEMsembler 
incorporates GPR rules predicted by the different models and assembles their combina­
tions. Having several GPR options per reaction can be used to guide model curation with 
respect to the gene essentiality prediction (Fig. 1C).

GEMsembler enables systematic characterization of uncertainties in GEMs

To demonstrate GEMsembler functionality, we investigated GEMs of two well-studied 
bacteria: Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) WCFS1 (LP), 

FIG 1 GEMsembler converts metabolic networks built with different tools to one nomenclature, combines them into a 

supermodel, and offers diverse comparison functionality. (A) Schematic representation of GEMsembler workflow, including 

construction of supermodel and generation of consensus models with different confidence levels. (B) Supermodel structure 

resembles the structure of a COBRApy model Python class with additional information on feature conversion and their original 

sources. (C) Examples of the downstream analysis functionality, including pathway visualization (left), growth analysis by 

assessment of metabolite production (center), and testing gene essentiality via GPR combination (right).
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a gram-positive bacterium living in fermented foods and the gastrointestinal tract, 
auxotrophic to multiple nutrients, and Escherichia coli BW25113 (EC), the best studied 
gram-negative bacterium with a large collection of gene essentiality data. Since both 
of these organisms have manually curated GEMs (32, 33), we can use them as gold 
standards for comparison with the outcomes of the GEMsembler workflow. We set 
out to (i) automatically generate GEMs for the two organisms with three different 
tools: CarveMe, gapseq, modelSEED, and download the corresponding models from the 
AGORA collection; (ii) assemble supermodels with GEMsembler; (iii) assess the agree­
ment of metabolic reactions and GPRs by investigating different consensus models: from 
the union of all models (assembly) to the intersection of all models (core4—since we are 
investigating four input models per bacteria); and (iv) compare the consensus models to 
the gold-standard ones.

The majority of metabolites, reactions, and genes from the four original models were 
successfully converted and included in the supermodels (Fig. S2; Table S1). Approxi­
mately half of the metabolites and reactions were identified only by one model, while 
between a quarter and a third of the genes were included in the GPR rule by only 
one model (LP: 339 out of 1186 genes; EC: 663 out of 1952 genes). Complete agree­
ment between all four models was observed for no more than a quarter of metabo­
lites, reactions, and genes. For each reaction with a GPR rule, we also calculated GPR 
agreement, which often does not correspond to the agreement score of the reaction 
itself. In general, the agreement between E. coli models is higher than between L. 
plantarum models (Fig. S2; Table S1).

To investigate agreement between different pathways, we focused on the produc­
tion of central carbon metabolites (Fig. 2A and B, Table S2), and biomass components 
(metabolites included in the biomass reaction) (Fig. S3 and 4; Table S3). We first identified 
topologically possible biosynthesis pathways in PMM5 minimal medium reported for L. 
plantarum (34) and in M9 minimal medium for E. coli. Next, we assessed the confidence 
of each identified pathway by checking the confidence of reactions and GPRs in each 
path. We found that for most of the central carbon metabolites, the models unanimously 
agree on whether they are produced or not. All four L. plantarum models also agree 
on the way most of the central carbon metabolites are produced, although the GPR 
agreement is lower (Fig. 2A). For E. coli, there is absolute agreement between models 
for all cases except one, beta-D-glucose 6-phosphate, which includes several reactions 
present in three models out of four (Fig. 2B). While for all other metabolites, there is 
core4 agreement for GPRs for almost all reactions, four reactions have GPR with core3 
agreement: HEX1, EDA, and ALKP are involved in the synthesis paths of most of the 
tested metabolites, and FBA3 is involved in the synthesis of D-Fructose 1,6-bisphosphate 
(Fig. 2B; Table S2). We also assessed the confidence of canonically defined glycolysis, the 
pentose phosphate pathway, and the TCA cycle. As expected, there is almost complete 
agreement in the glycolysis pathway with only some discrepancies on the GPR level 
(Table S4; Files S1 and S2). The pentose phosphate pathway is also consistent with 
disagreement in one L. plantarum reaction and three E. coli reactions out of eleven (Table 
S4; Files S3 and S4). The TCA cycle showed the most uncertainty: for E. coli, mostly on the 
GPR level, but for L. plantarum, most of the TCA cycle is either absent or identified with 
large discrepancies (Table S4; Files S5 and S6).

We next performed the same topology-based analysis for the production of biomass 
components. Different models include different metabolites in the biomass reaction; 
here, we decided to use their union for the complete overview (76 reactants in the 
union of both bacteria) (Table S5). From this analysis, we excluded metabolites that are 
either media components or cofactors. Production of biomass components is much less 
confident than that of central carbon metabolites for both organisms, but the trend that 
E. coli models have more agreement stands. For example, only 6 biomass components 
in the L. plantarum model were produced with complete agreement, while 11 biomass 
components had core4 agreement in E. coli (Fig. S3 and 4; Table S3).
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Summarizing the results of the topology analysis allows us to identify areas of 
uncertainty in the large metabolic network, which should be further investigated in a 
step-wise approach (Fig. 2C). First, for the metabolites of interest (30 central carbon and 

FIG 2 Analysis of metabolic network confidence for L. plantarum and E. coli models. (A) Central carbon metabolites 

production in the converted original models and consensus models on the left, and agreement scores for reactions and GPRs 

in the corresponding most confident pathways (highlighted with *) for L. plantarum. (B) The same plots for E. coli. (C) Step-wise 

procedure of identification of the most uncertain pathways and reactions for further investigation (left) and the results of 

central carbon metabolites and biomass components examination in L. plantarum and E. coli (right). (D) Characteristics of 

the most unconfident reactions selected at the last step in C for L. plantarum and E. coli with respect to their confidence, 

confidence of the corresponding GPR rules, and the distance from the selected metabolite of interest (which requires these 

reactions to be synthesized). (E) Example of an uncertain pathway in L. plantarum (succinate biosynthesis, caused by the 

SUCDi and ABTA reactions). (F) Example of an uncertain pathway in E. coli (valine biosynthesis, caused by the ACLS reaction).
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76 biomass components), we separated the regular metabolites from the other types of 
metabolites, such as nutrients, media components (other than nutrients), and cofactors. 
Next, for regular metabolites, we assessed the model agreement score and filtered out 
metabolites below the agreement score core2. This left us with 51 metabolites for L. 
plantarum and 60 for the E. coli model, for which we then checked production pathways. 
Metabolites without complete model agreement on their biosynthesis paths were then 
subject to manual examination (Fig. 2C; Table S6).

In this final step, we examined the biosynthesis pathways of 7 central carbon 
metabolites and 19 biomass components of L. plantarum, as well as 1 central carbon 
metabolite and 18 biomass components of E. coli using the interactive maps generated 
by GEMsembler and manually assigned them into three categories representing our 
decision about their production: produced, not produced, and uncertain (Fig. 2C; Table 
S6). The pathways from the uncertain category contain reactions that are needed to 
produce metabolites of interest and that have discrepancies between two or more 
models on the gene level. Therefore, the disagreement between models does not make 
us more certain about whether the metabolites can be produced and the corresponding 
pathways should be prioritized for further investigation. For L. plantarum, these include 
pathways for 2 central carbon metabolites, succinate and succinyl-CoA, and 11 biomass 
components, while for E. coli, these include 8 biomass components (Fig. 2C; Table S6). 
Each of the uncertain biosynthesis pathways contains at least one reaction causing the 
uncertainty, with a total of 26 uncertain reactions for L. plantarum and 10 uncertain 
reactions for E. coli (Fig. 2D; Table S6). Most of these reactions in L. plantarum are 
confirmed by two models and have GPR included only in one model, while for E. coli, 
uncertain reactions have slightly better confidence with GPRs included in two models. 
Most of these uncertain reactions are in the immediate proximity to or one reaction 
away from the investigated metabolite, while some are up to seven reactions away in the 
biosynthesis pathway (Fig. 2D; Table S6).

GEMsembler provides the opportunity to explore these pathways and uncertainties 
visually with interactive maps and select their key elements, as we show for succinate 
biosynthesis in L. plantarum (Fig. 2E; Table S6; File S7). In this case, uncertainty is caused 
by two alternative paths: one through the SUCDi reaction and another through the ABTA 
reaction with GPRs provided only by one model. Another example is valine biosynthesis 
in E. coli with three reactions found only by two models: ACLS, GLUDxi, and ALATA_L 
(Fig. 2F; Table S6; File S8). GLUDxi duplicates the function of a more confident GLUDy, 
with the only difference being the use of NAD instead of NADP and, therefore, does 
not influence valine production. Since glutamate dehydrogenase in E. coli is NADP-spe­
cific (35, 36), this reaction is likely erroneously added by the automatic reconstruction 
tools. ALATA_L is required for alanine biosynthesis, and therefore was considered an 
uncertainty in the alanine pathway. It has been reported that E. coli encodes at least 
two alanine-synthesizing glutamic-pyruvic transaminases (37); therefore, this reaction is 
likely correctly added to the model. The ACLS reaction corresponding to acetolactate 
synthase is directly required to produce valine and has been identified in E. coli (38, 
39); therefore, it should also be retained in the model. In this way, identified uncertain 
reactions can either be validated by existing knowledge or serve as candidates for 
further experimental verification.

In this part, we demonstrated how GEMsembler helps to systematically characterize 
the confidence in the metabolic network and prioritize uncertain pathways and reactions 
for further investigation based on their confidence levels.

Curation of GEMs with GEMsembler to reproduce growth phenotypes

The consensus models constructed with GEMsembler can facilitate model curation to 
reproduce growth with the classical FBA algorithm. Since both L. plantarum and E. 
coli can grow in defined minimal media (Table S7), we can use this information to 
curate their models with GEMsembler following the agreement principle. GEMsembler 
growth analysis functionality uses FBA to identify biomass components that cannot be 
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produced, therefore explaining the lack of growth under the given conditions. Prelimi­
nary growth simulations for mixed original and consensus models demonstrated that 
neither of the models could grow, because not all of the biomass components could be 
produced (Table S8).

To curate the models, we decided to first modify the biomass reaction and then 
make sure that all biomass components can be produced with FBA. We used the 
agreement score calculated by the GEMsembler biomass analysis function to keep 
biomass components included by three or more models (Table S5). Several metabolites 
included only by one or two models were also included if they could be synthesized 
by the corresponding models (Materials and Methods). In total, we included 58 and 61 
components in the biomass reactions of L. plantarum and E. coli, respectively (Table S5).

After modifying the biomass reaction based on the agreement principle, we ran FBA 
for all models again to test whether they gained the ability to grow. Only the assembly 
model was able to grow, while each of the other models was not able to produce at least 
one biomass component (Fig. 3A and B; Table S8). Here, we used FBA instead of topology 
analysis to ensure that the metabolite production is relevant for the growth simulations 
and takes into account transport and cofactor utilization. The number of metabolites 
produced with complete agreement (core4) was low in both organisms (LP: 10/58; 
EC: 12/61), but E. coli can produce more biomass components with higher agreement 
than L. plantarum. For E. coli, the core2 consensus model can produce the majority of 
biomass precursors (Fig. 3A), while for L. plantarum, core2 and core3 consensus models 
were similar in their metabolite production capacity and could produce less than half 
of the target metabolites (Fig. 3B), underlining that model consistency is much lower 
for L. plantarum compared to E. coli. We note that there are metabolites (e.g., cysteine, 
glutathione, 2-demethylmenaquinone) that can be produced by all input models, but 
not by all consensus models (Fig. 3A), which indicates that the production pathways 
are different between the models and are therefore not included in the consensus. To 
balance the confidence, complexity, and function (being able to grow) of the curated 
model, we chose the core3 consensus model as the basis and added a subset of reactions 
from the other models to ensure that all biomass precursors can be produced.

To determine which reactions are necessary to add for curation, we examined 
the interactive maps depicting pFBA-determined biosynthesis pathways for biomass 
components that cannot be produced by the core3 model, but can be produced by 
some other models. Reactions with less than core3 confidence level in these pathways 
from the other models can restore the production of the target metabolite, even if 
they are not in its immediate proximity, but at the same time, not all of them are 
essential for production. For example, in the path for thiamine diphosphate biosynthesis 
in L. plantarum, there are two to three unconfirmed reactions in three parts of the 
pathway that would need to be added (Fig. 3C; Table S8; File S9). One of the most 
challenging parts of curation is considering the highly connected biomass precursors 
such as ATP or NAD. In this case, sometimes adding reactions will not be enough, and 
reaction properties need to be changed. For example, the CarveMe model was the only 
one able to produce ATP in L. plantarum, which was due to the bidirectionality of the 
phosphoribosylaminoimidazole carboxylase reaction (AIRCr); therefore, we implemented 
this bidirectionality in the curated core3 model as well.

Overall, we added 72 reactions to the core3 L. plantarum model, including 28 
transport and exchange reactions, leading to the final core3 GEMsembler curated model 
with 639 metabolites, 729 reactions, and 420 genes. We curated the core3 E. coli model 
in the same way to ensure its growth on M9 minimal medium. We added 43 reactions, 
including 11 for transport and exchange, and the final core3 GEMsembler curated E. coli 
model consists of 943 metabolites, 1,217 reactions, and 644 genes. The technical quality 
reports generated by MEMOTE (40) for the final core3 models and the original models 
confirm that GEMsembler curation solves the issue of blocked biomass precursors that 
exists in all original models except CarveMe and leads to a more realistic growth for L. 
plantarum.
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In this section, we demonstrated how GEMsembler can aid model curation in 
a semi-automated way to ensure that the model can reproduce a known growth 
phenotype.

FIG 3 Curating L. plantarum and E. coli models with GEMsembler. (A) Production of unified biomass precursors for L. 

plantarum estimated with pFBA. (B) Production of unified biomass precursors for E. coli estimated with pFBA. Horizontal green 

boxes highlight the models selected for curation; the vertical green box highlights the metabolite for which the curated 

pathway is depicted in panel C. (C) Example of curated reactions in thiamine diphosphate (tmpp_c) biosynthesis pathway of L. 

plantarum.
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GEMsembler-curated model outperforms the gold-standard L. plantarum 
model in auxotrophy prediction

After curating the core3 model of L. plantarum for growth in PMM5 minimal medium, 
which contains several amino acids and vitamins, we wanted to assess the model quality 
by testing whether it can predict L. plantarum auxotrophy to different nutrients. We 
compared the core3 model’s topology and performance to a previously reported curated 
model of L. plantarum iLP728 (6, 32), which we considered to be the gold standard, and 
to the four original AGORA, CarveMe, gapseq, and modelSEED models of L. plantarum, 
converted to BiGG nomenclature with GEMsembler and automatically gap-filled with the 
CarveMe tool on the minimal PMM5 medium, which we considered to be the baseline. 
We compared how many reactions and genes intersect between each of the models 
and the gold-standard iLP728 model and calculated the ratio of each intersection to 
each of the model’s size (precision) or the iLP728 size (recall) (Fig. 4A; Table S9). We 
also calculated the F1 score (the harmonic mean of precision and recall) as a summary 
metric of the reaction and gene overlap. Compared to the original input models, the 
core3 model recalls a similar fraction of reactions and genes corresponding to these 
reactions in the iLP728, while including much fewer reactions and genes not present 
in the iLP728 model, leading to the best F1-score for reactions (0.58) and second best 
F1-score for genes (0.51) (Fig. 4A; Table S9). Thus, the GEMsembler curated core3 model 
is more similar to the gold-standard iLP728 model of L. plantarum than the four original 
models.

While higher model similarity to the gold-standard iLP728 does not necessarily mean 
higher model quality, as new gene functions and pathways could have been discov­
ered since the original publication of iLP728, we next assessed the models’ functional 
performance. We tested the models’ ability to predict L. plantarum auxotrophy to 
different nutrients in a different medium, CDPM (Table S7), and compared the results 
to the reported experimental auxotrophy data classified into three categories: growth, 
no growth, and reduced growth (32, 34). We predicted growth for each model in each 
condition by running FBA in a modified medium where one of the tested nutrients 
was removed. We classified FBA prediction results into growth and no growth since 
there were no cases with reduced growth prediction. Our core3 model outperforms 
all the other models, including iLP728, in two to four growth conditions. There are 
no metabolites for which auxotrophy prediction is incorrect in the core3 model but 
correct in any other model (Fig. 4B; Table S9). Four out of five false predictions of the 
core3 model happen in the case of experimentally observed reduced growth, while 
the model predicts either growth or no growth. In the case of tryptophan auxotrophy, 
where the core3 and all other models predict growth, the false prediction can likely be 
explained by the non-metabolic inhibition by other aromatic amino acids in the medium 
(32). Compared to the gold-standard iLP728 model, core3 correctly predicts auxotrophy 
phenotype for four metabolites: growth without biotin and pyridoxamine, and absence 
of growth without glutamate and riboflavin (Fig. 4B; Table S9).

The GEMsembler functionality to analyze the network structure allows us to 
investigate the underlying reasons for improved auxotrophy predictions. In the case 
of biotin, the difference is that the iLP728 model considers it as a biomass component, 
while none of the original models, and therefore neither the core3 model includes 
it (Table S5). Although this modification of the biomass reaction leads to the correct 
prediction of L. plantarum growth without biotin supplementation, it does not explain 
how L. plantarum synthesizes biotin. Since it is known that biotin is essential for fatty 
acid synthesis in lactic acid bacteria (34), further investigation of the biotin biosynthe­
sis pathway is needed. The opposite is observed for riboflavin, where experimentally 
determined auxotrophy is not predicted by iLP728, because riboflavin is not included 
in the biomass reaction. The core3 and all the original models include riboflavin in the 
biomass reaction (Table S5), which is wrongly predicted to be synthesized by CarveMe 
and AGORA models, while core3, gapseq, and modelSEED models do not include its 
biosynthesis pathway. The other two prediction discrepancies between the core3 and 
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iLP728 models can be explained by the difference in biosynthesis pathways. In the 
case of pyridoxamine, the iLP728 model requires it to produce a biomass component, 
pyridoxal 5′-phosphate, via the ALATA_Lr reaction that does not have a GPR rule (File 
S10). Core3 model, on the contrary, includes a different pathway to produce pyridoxal 
5′-phosphate without pyridoxamine via PYDXS reaction (File S11), which is included 
in three original models without a GPR rule, therefore correctly predicts that pyridoxa­
mine is not essential. Finally, glutamate auxotrophy is not predicted by iLP728 due to 
the presence of the P5CD reaction, which enables glutamate production from proline 
included in the CDPM medium (File S12). This reaction does not have a GPR in iLP728 and 
is not included by any of the original models; therefore, it is not included in core3, which 
leads to the correct prediction of glutamate auxotrophy.

In this section, we demonstrated that the model assembly and curation pipeline 
of GEMsembler, based on the agreement of the original models, produces metabolic 
models that can accurately describe experimental phenotypes and even outperform the 
gold-standard curated model. Furthermore, the GEMsembler curated core3 model is the 
closest in terms of included reactions and genes to iLP728, while being the smallest 
of all tested models, providing a balance between model complexity and functional 
capacities. If additional data become available, it can be further curated with the help 
of GEMsembler, which provides candidate reactions for modification based on their 
confidence.

FIG 4 Core3 L. plantarum model curated with GEMsembler outperforms the other models in auxotrophy prediction. (A) 

Comparison of reactions and genes included in the core3 model, the four original models, and the gold-standard iLP728 

model of L. plantarum. (B) Prediction of auxotrophy to different nutrients in CDPM medium for all models compared to 

the experimental information. core3—core3 model curated with GEMsembler; ag_LP—AGORA, ca_LP—CarveMe, ga_LP—

gapseq, mo_LP—modelSEED models of L. plantarum, exp_data—experimental data.
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Curating GPR rules with GEMsembler improves gene essentiality predictions 
in E. coli

Model quality depends not only on the network topology, determined by the reactions, 
but also on the genes included in the GPR rules. GPR rules can be tested by performing 
gene essentiality predictions, that is, simulating growth while a certain gene is knocked 
out and the corresponding reactions cannot carry flux, and comparing the results to 
the experimental data. Gene essentiality predictions can vary between different input 
models, as the GPR rules can differ, although the same input genome is used to construct 
the models. Since GEMsembler provides the GPR information from all the original and 
consensus models, we aimed to investigate whether the space of possible GPRs can be 
leveraged to improve gene essentiality prediction by combining GPR rules from different 
models.

For our analysis, we selected the core3 GEMsembler curated E. coli model, and the 
original AGORA, CarveMe, gapseq, and modelSEED models, converted by GEMsembler 
to BiGG nomenclature and gap-filled with the CarveMe tool on M9 medium. First, as for 
L. plantarum, we checked how similar the curated core3 model and the original models 
are to the latest curated E. coli model iML1515 (18) (Fig. 5A). We note that this version 
of iML1515 was modified by Bernstein et al. from the original iML1515 model built for 
the MG1655 strain (33) to account for the differences between MG1655 and BW25113 
strain for which experimental gene essentiality data are available. For E. coli, the original 
CarveMe model is the closest one to iML1515, which is not surprising since the universal 
CarveMe model used for reconstruction incorporates reactions from BiGG E. coli models. 
Core3, while having the smallest number of reactions and the corresponding genes, has 
the highest precision for genes and the second highest precision for reactions overlap­
ping with iML1515 (Fig. 5A; Table S10). This is also reflected by principal component 
analysis performed on reaction matrices, as the curated Core3 model is clustering the 
closest to iML1515 compared to the other models (Fig. S5).

To assess the models’ functionality, we compared their gene essentiality predictions 
with experimental data on fitness defects of 3,789 gene knock-out mutants in 41 minimal 
media, with 28 and 13 carbon and nitrogen sources, respectively (41, 42). This experi­
mental data set was previously used to evaluate four published curated models of E. 
coli and manually modify the latest curated model, iML1515, to further improve gene 
essentiality predictions and provide an adjusted model, iML1515a (18). In our analysis, 
we used 15 carbon sources and all 13 nitrogen sources, on which all models can grow, 
and calculated the area under the precision-recall curves (AUCPR) for gene-condition 
pairs sorted by the experimentally determined growth defect as the quality metric 
(Fig. 5B). The AGORA model with AUCPR = 0.642 outperformed all tested models apart 
from the adjusted iML1515a model with AUCPR = 0.754, including the standard curated 
iML1515 with AUCPR = 0.593 (Fig. 5C). It was closely followed by the core3 GEMsembler 
curated model with AUCPR = 0.556, while the original gapseq, CarveMe, and modelSEED 
models perform worse with AUCPR between 0.3 and 0.5 (Fig. 5C).

Wrong predictions occur either due to the wrong network topology or the wrong GPR 
rules. We next leveraged consensus models to address the second issue for each tested 
model, including iML1515 and its adjusted version. As a first approach, we implemented 
a stepwise combination algorithm (SA), where for each model, we modified GPR rules 
that include wrongly predicted genes using GPR rules from the other models ordered by 
decreasing AUCPR, if the essentiality of the corresponding genes was predicted correctly 
(Materials and Methods). As a second independent approach, we combined GPR rules 
from different models with a genetic algorithm (GA), which picks the GPR rules from all 
possible rules suggested by different models solely based on optimization of the AUCPR 
for the carbon source conditions. After improving gene essentiality prediction for the 
data on different carbon sources, we tested whether the improvement was also observed 
for the nitrogen sources (Fig. 5B).

These two GPR modification algorithms change different numbers of GPRs in the 
models: while the stepwise algorithm modifies only a few dozens with a minimum of 
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three for iML1515a and a maximum of 34 for iML1515, the genetic algorithm introduces 
hundreds of changes (Fig. 5D). These changes in GPR may also result in genes being 
added or removed from the model, with 1–10 genes being altered by the SA and 6–
248 genes being altered by the GA (Fig. 5E; Table S10). With the SA, almost no genes 
were removed from the models except six genes in the adjusted iML1515a model and 

FIG 5 Combining GPR rules for E. coli models improves gene essentiality predictions for growth on different carbon and nitrogen sources. (A) Comparison 

of reactions and the corresponding genes included in the core3 model, the four original models, and the gold-standard iML1515 model of E. coli. (B) 

Schematic representation of the GPR modification to improve gene essentiality predictions by each model. (C) Precision-recall (PR) curves and their AUC for 

gene essentiality predictions on carbon sources (left) and nitrogen sources (right) for the original models (blue, solid) and models modified with either the 

combination algorithm (turquoise, dashed) or the genetic algorithm (green, dotted). (D) Number of changed GPRs in each model by the SA and GA procedures. 

(E) Number of changed genes in each model by the SA and GA procedures. (F) Number of genes with different prediction status for the original and SA/GA 

modified models using log2 fold change <−2 for fitness defect compared to the wild type to define no growth. (G) Number of genes for which the essentiality 

prediction improved using the models modified with either SA or GA, genes with a subset of correct essentiality predictions that were added to the models, and 

the intersection between the genes improved by SA and GA.
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one gene in the gapseq model. GA also tends to add new genes rather than remove 
existing ones, except for the adjusted iML1515a and CarveMe models, which included 
the highest number of genes originally (Fig. 5E).

Combination of GPR rules with SA improved gene essentiality predictions for all 
models (Fig. 5C). The performance of the core3 model improved by 13.5% with the 
final AUCPR = 0.691 which is higher than for the original iML1515 model. The perform­
ance of the AGORA model improved by 8.7% reaching AUCPR = 0.729. Gapseq model 
performance was improved the least by 1.8%, while the performance of CarveMe and 
modelSEED models improved the most by 12.8% and 16.7% with AUCPR of 0.513 and 
0.492, respectively. Even the performance of the gold-standard models could be further 
improved, reaching AUCPR = 0.616 for iML1515 (2.3% increase) and AUCPR = 0.767 for 
the adjusted iML1515a (1.3% increase) (Fig. 5C). While it is not surprising that models 
with a higher prediction quality enhance predictions of the less well-performing models, 
our results demonstrate that model combination can also be beneficial for the opposite 
cases. For example, the AGORA model was improved by each of the core3, gapseq, 
CarveMe, and modelSEED models, which have worse original prediction quality (Table 
S10).

Using GA to find an optimal GPR combination from the original models improves 
the gene essentiality predictions for all models even more than SA. The modified core3 
and AGORA models reached AUCPR of 0.711 and 0.731, respectively, outperforming the 
modified iML1515 (Fig. 5C). Gapseq performance improved by 6.6%, while the perform­
ance enhancement for the CarveMe and modelSEED models was the largest, with 
improvement of 19.7% and 27.7% leading to AUCPR of 0.582 and 0.602, respectively. 
The performance of the gold-standard models could be improved by 6% for iML1515 
and by 1.7% for the adjusted iML1515a (Fig. 5C).

Improvement in the overall prediction quality is followed by the increase in the 
numbers of genes with all correct or mixed predictions for all 15 carbon sources and 
decrease in the number of genes with the wrong predictions (Fig. 5F). Specifically, 3–15 
genes had wrong predictions in different original models, which got improved by either 
SA or GA procedure (Fig. 5G) across multiple conditions (Fig. S6). In addition, new genes 
(1–8 genes for SA and 6–229 genes for GA) with correct or mixed predictions were 
introduced to the models (Fig. 5G, Table S10). There are no genes in any of the models 
that moved to the wrong prediction category due to SA or GA modifications, and only 
one gene was added by SA to the ModelSEED model, which had wrong predictions in all 
15 carbon sources.

We investigated what genes and GPRs were introduced to the best curated model 
available to date, the adjusted iML1515a, that improved its performance even further. 
GA and SA both improved the predictions for three genes (b0131, b0134, and b0778) 
that were in the model and introduced one gene (b1593) with correct predictions. 
Each of the improved three genes corresponds to a single reaction in the adjusted 
iML1515a (ASP1DC, MOHMT, DBTS, respectively). These genes were originally predicted 
as essential but became non-essential after the GPR modification in agreement with 
their non-essentiality across all experimental conditions. They became non-essential
because the corresponding GPR rules that included only one gene were changed to 
a GPR rule including two or three isoenzymes. Thus, GEMsembler suggests candidates 
for taking over the function of these genes. For example, the GPR rule of dethiobiotin 
synthase reaction (DBTS) was changed from (b0778) to (b0778 or b1593). Indeed, b1593 
is annotated in Ensembl (43) as putative dethiobiotin synthetase, which is supported 
by functional experimental assays (44), and itself has the correct prediction of being 
non-essential, corresponding to the experimentally determined non-essentiality.

Since it is important to test whether the model improvement can be generalized, 
we performed gene essentiality predictions for the same mutants grown on different 
nitrogen sources (Fig. 5C). For the input models and the modified models (with GPR 
changed based on the carbon sources data), the improvement trends and the overall 
prediction quality were reproduced in the nitrogen sources data set (Fig. 5C; Table S10). 
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These results indicate that while experimental data is necessary to automatically improve 
the models’ functional performance, the improved models can also perform better in 
experimental conditions that were not used for model curation.

Taken together, the GEMsembler framework for comparing different models and 
building their consensus can be leveraged to combine model features, either manually or 
automatically, like in the case of gene-protein-reaction rules, to improve the perform­
ance of both the original and consensus models.

DISCUSSION

GEMsembler offers a comprehensive and flexible solution for comparing GEMs built 
using different tools and assembling their consensus models with different agreement 
levels. Comparison across tools is essential, since the choice of reconstruction tool 
can affect the model structure and predictions even more than the input genome. 
Indeed, it was recently shown for environmental bacterial communities that models 
built with the same tool were more similar to each other in predicting exchanged 
metabolites than models built for the same type of community (24). GEMsembler 
reveals the variability introduced by different tools, provides a functionality to navi­
gate in large metabolic networks, and builds consensus models based on the model 
agreement, potentially reducing tool-dependent biases. We demonstrate that building 
consensus models is beneficial because models can improve each other’s performance, 
for example, in auxotrophy and gene essentiality predictions. While experimental data 
are required to improve model performance, GEMsembler provides (semi)automatic 
solutions to combine and identify which model features correspond best to the 
experimental observations, accelerating the design-build-test-learn cycle for cellular 
metabolism. Furthermore, comparing alternative reactions and GPR rules between 
different models reveals uncertainties and gaps in our knowledge of the organism’s 
metabolic pathways and helps to prioritize and design experiments to elucidate these 
gaps. Finally, we propose a systematic and transparent workflow for curating consensus 
models, demonstrating that the GEMsembler-curated models have similar quality or 
even outperform the gold-standard curated models of L. plantarum and E. coli. In this 
way, GEMsembler can streamline the time-intensive process of model construction and 
curation while ensuring high-quality models.

GEMsembler also has its limitations, the first being its dependency on BiGG as the 
primary database, which has fewer metabolites and reactions than, for example, the 
modelSEED database. We chose BiGG because it is model oriented, widely used in 
the research community, and has self-explanatory IDs. The flexibility of GEMsembler, 
however, would allow us to change the primary database, if there is a need in the 
modeling community. The second limitation is that GEMsembler loses unconverted 
metabolites, reactions, and genes in the default mode of analysis. We addressed 
this issue by introducing a mixed option for supermodel generation, which includes 
non-converted network elements that can be added if they turn out to be important 
for the analysis. In addition, while GEMsembler currently supports conversion from six 
model types, the existing model conversion classes can be adapted by the user to new 
model types.

One of the challenges of consensus model building that GEMsembler attempts to 
solve is the ambiguous definition of combinations of specific model attributes, such 
as GPR rules, reaction boundaries, or directionality. For instance, how is an intersection 
of two GPR rules defined, if in one model the rule is “(A and B) or C” and in another 
one “(A and D) or E”? On the one hand, it can be A, but on the other hand, it can be 
empty. We implemented the former option as the default, but included a “and_as_solid” 
parameter to all functions that include a GPR combination, which can be changed 
to “True” to choose the latter option. Another combination-related challenge is the 
numerous ways to combine different models. In this work, we used a rigid approach, 
which kept model features and their attributes on which a fixed number of models agree. 
It can result, for example, in cases when a reaction is present because three models 
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agree on it, but its GPR rule is not retained because there is no overlap between any 
three models’ GPR rules. In the future, we plan to implement a more flexible way to 
combine feature attributes, such as retaining a GPR rule that corresponds to the highest 
non-empty model agreement for each reaction. Furthermore, when a pathway from a 
lower agreement consensus model is added to a higher agreement consensus model, 
the reactions are currently selected based on pFBA analysis, which means that the added 
pathway will be minimal and have the overall agreement level of the corresponding 
consensus model. While the overall agreement of the pathway cannot be increased, 
since we select it from the consensus model with the highest agreement level in which 
the pathway exists, an alternative way to select reactions could be to maximize the 
fraction of reactions with the highest possible agreement within a path (e.g., higher 
than the overall consensus model), which we consider implementing in the future. 
Further GEMsembler improvements could include refining the merging of the duplicated 
reactions, adding metabolite/reaction annotations to the output models, and introduc­
ing a possibility for the user to guide the conversion process.

While here we demonstrated that GEMsembler can compare, combine, and aid in the 
curation of models for single bacterial species, its functionality is not limited to these 
examples. Alternative pathways identification between different models can inform 
engineering strategies for strain design to increase the production of metabolites of 
interest or optimize growth (45). Further applications can include comparing models 
of closely related species or strains to identify their metabolic differences (23, 46–49). 
Another application could be comparing different organisms with a similar metabolic 
phenotype in order to find common pathways that could be responsible for that (50, 
51). Furthermore, the use cases of GEMsembler can be expanded to microbial commun­
ities (10, 52, 53). An assembly model of the entire community can provide insights 
into the pathways that are overlapping or complementary between different commun­
ity members, suggesting potential interspecies interactions and guiding experimental 
design (54, 55).

Taken together, we believe that GEMsembler’s systematic approach to assembling 
consensus models and ease of use will benefit researchers at any experience level 
interested in building, analyzing, and curating GEMs of their species of interest. At 
the same time, GEMsembler’s functionality can be generalized and integrated into 
other computational pipelines addressing various aspects of bacterial metabolism. We 
therefore hope that GEMsembler will be adopted by a broad scientific community 
working in the area of systems and computational biology and contribute to building 
more comprehensive, concise, and biologically informed metabolic models.

MATERIALS AND METHODS

GEMsembler package overview and source code availability

GEMsembler package workflow consists of four main steps: (i) input model conversion; 
(ii) supermodel assembly; (iii) consensus model generation; and (iv) assessment of model 
agreement and functional analysis. As input, GEMsembler requires model files in SBML 
format with the information on which tool was used to generate the model. Currently, 
GEMsembler supports input models built with either of the four tools: CarveMe (10), 
gapseq (7), MetaNetX (17), and modelSEED (9), or downloaded from either of the two 
databases: AGORA (13) and BiGG (11). Models from other sources can be implemented 
by adding a custom model type. Optional input to GEMsmebler, alongside the models, 
is the bacterial genomes used to generate each of the input models, as well as the 
genome file or NCBI assembly ID (for automatic file download), which should be used 
for the final conversion of GPR rules between the models. As output, GEMsembler 
produces the supermodel that is stored in JSON format, as well as consensus models in 
the standard SBML format readable by COBRApy (28) or alternative COBRA and model 
analysis packages (56–58). At the model analysis step, GEMsembler requires the input 
list with the growth medium components and the metabolites or pathways of interest 
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and produces plots, tables, and interactive pathway maps in HTML format. GEMsembler 
is developed in Python and requires standard Python libraries, as well as BLAST (27), 
which is needed for gene conversion, and the MetQuest package for topological network 
analysis (29). Out of these dependencies, only BLAST needs to be installed separately by 
the user. GEMsembler source code, tutorials, and example notebooks are freely available 
at https://github.com/zimmermann-kogadeeva-group/GEMsembler.

Model conversion step

In the first step, to convert metabolite IDs of the input models to BiGG IDs (11), GEMsem­
bler uses and prioritizes several sources of crosslink information. We checked for the 
BiGG IDs provided in the metabolite/reaction annotation field in the input model, as well 
as crosslink information from the original database of the input model (ModelSEED [8], 
BiGG [11]). If the IDs provided in the model annotation and the original database overlap, 
their intersection becomes the first priority for ID mapping. If there are discrepancies 
between the two, the IDs provided in the model annotation field are considered as 
the second priority, and if it is empty, the original database crosslinks are considered 
as the third priority. If there are no conversion results from the model annotation or 
the corresponding database, the fourth priority is to use some additional conversion 
information, such as MetaNetX (17) with crosslinks between many databases. If still 
no BiGG ID is found, the fifth priority is to change the ID according to some pattern 
(e.g., replace one last underscore with two underscores in AGORA IDs). The last and 
sixth priority is to check whether the ID itself, without any changes, can be found 
in the list of BiGG IDs. For each of the currently supported model types, a separate 
conversion step is implemented. For a custom model type, the user needs to adapt the 
conversion step according to the model nomenclature. The conversion results between 
different databases are often ambiguous. One ID in the original database can corre­
spond to several BiGG IDs (one-to-n), several different IDs can be converted to one 
BiGG (n-to-one), and even several input IDs can have links to the same set of several 
BiGG IDs (n-to-n). For different input models that use the same biochemical database 
nomenclature, such as gapseq and ModelSEED models that both use the ModelSEED 
database, checking for conversion consistency between models allows eliminating some 
ambiguous results. For the main track of further steps, GEMsembler selects metabolites 
to ensure unique one-to-one conversion, and those that do not fulfill that requirement 
are considered separately.

After the metabolites are converted, the reactions are converted based on their 
equations. First, only uniquely converted metabolites are used to generate reaction 
equations in the BiGG nomenclature. For metabolites that were not converted uniquely, 
for example, one-to-many, GEMsembler uses different possible conversion results 
to compose potential reaction equations with the corresponding metabolites and 
automatically checks if any of these equations are present in the BiGG database. If one 
of the conversion options for a particular metabolite leads to the reaction equations 
present in the BiGG database, that conversion is used as a conversion result for that 
metabolite and its reactions. In addition, for models that do not include a periplasmic 
compartment, this compartment can be introduced if there are reactions for which 
changing a metabolite compartment from cytosolic or extracellular to periplasmic leads 
to correct equations present in the BiGG database. In addition, GEMsembler merges 
reactions with duplicated reaction equations in the models and in the BiGG database, 
keeping those that are used in the largest number of models.

All stages of conversion are saved in a special “GatheredModels” class, which precedes 
supermodel assembly. Though only one converted ID, if selected, is used in supermodel 
assembly, all other potential versions of the converted IDs are available for the user to 
check in “GatheredModels,” including reaction IDs converted only by MetaNetX or other 
databases, but not supported by reaction equations.

If provided with the input genomes used to generate the corresponding original 
models, and either an NCBI assembly ID or a genome file in fasta format to be used 
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for the output models, GEMsembler converts genes included in the input models to 
the output genome sequences. In case an NCBI assembly ID is provided, the assembly 
is downloaded automatically according to NCBI ID with the ncbi_genome_download 
package (59) and locus tags from the assembly are used as gene IDs; otherwise, the 
model genes are converted to the gene IDs provided by the user in the custom fasta 
file. Changes introduced by different tools to the gene IDs (like the addition of a dot or 
the replacement of an underscore), or gene coordinates instead of IDs used by gapseq, 
are taken into account during the gene conversion process, which can be different for 
different types of models. The final conversion is made using BLAST sequence alignment 
(27).

The supermodel structure and functionality

Information from all the input models is stored in a Python structure called supermodel, 
with the metadata from all input models available in the “notes” attribute. Supermodel 
consists of three main classes: metabolites, reactions, and genes, each of which has the 
following main fields: “assembly,” “comparison,” and “not_converted.” The field “assem­
bly” unites the information on individual metabolites, reactions, or genes from all the 
input models. These main classes also have fields for each original model for direct 
access. Not converted metabolites, reactions, or genes are stored in the corresponding 
“not_converted” field. If the user does not want to lose non-converted elements of the 
models, it is possible to mix them with the converted ones in the “assembly” using the 
original non-converted IDs from the input models. Each metabolite, reaction, or gene has 
similar attributes as in the COBRApy Python class structure, such as “name” or “reactions” 
for a metabolite, “reactions” for a gene, “metabolites,” “genes,” “gene_reaction_rule,” 
“lower_bound,” “upper_bound” for a reaction, but inside of each attribute, separate fields 
are added for each input model and their union. These fields allow direct comparison of 
the values of each attribute in each of the input models and their union.

Supermodel offers various built-in comparison functionalities, for instance, calculat­
ing the features on which at least or exactly X input models agree with corresponding 
“at_least_in” and “exactly_in” supermodel methods. Another supermodel method called 
“present” allows finding features that are included by a certain list of input models 
but are excluded by others using logical expressions. Attributes of reactions undergo 
comparison procedures as well. Lower and upper bounds are selected in such a way that 
intervals from the input models of interest are intersected, and the resulting intervals 
are united for possible combinations. Since initially, when assembling a supermodel, 
we are unsure that all reactions from different models assign reactants and products in 
the same way, the reversibility of the reaction is determined only by its boundaries. For 
metabolite coefficients, we made a rule that the coefficient value is assigned to the mode 
of coefficients from the models of interest, averaged by their possible combinations. 
Though this rule is arbitrary, it is possible to check for reaction balance and change the 
coefficient later. If present in the biomass reaction of the original models, the metabolites 
representing the “Growth-associated maintenance” (GAM), typically integrated in the 
biomass reaction as an ATP hydrolysis, are treated as any other coefficient. In the same 
way, the lower bound of the ATP maintenance (ATPM) reaction, the non-growth-associ­
ated maintenance (NGAM) term, is treated as any other lower bound in the model. 
Therefore, if in the original models GAM and NGAM were correctly included in the model, 
that will propagate to the consensus models. Nevertheless, it is always advised that the 
user adjusts GAM and NGAM values based on the strain-specific experimental data. For 
gene reaction rules, we identify parts of the rule on which all models of interest agree, 
and then unite these parts with “or” for possible model combinations. The results of all 
performed comparisons are stored in the “comparison” attribute, which is empty at the 
beginning.

Afterward, it is possible to extract any consensus model, in standard SBML format, 
as well as add or remove specific reactions the user is interested in by specifying their 
IDs (if a reaction is added, all its attributes are added from the assembly level). The 

Methods and Protocols mSystems

October 2025  Volume 10  Issue 10 10.1128/msystems.00574-2518

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 2

3 
O

ct
ob

er
 2

02
5 

by
 2

0.
23

4.
37

.8
8.

https://doi.org/10.1128/msystems.00574-25


consensus level for genes and the biomass reaction can be specified separately. For 
orphan metabolites in different compartments, additional transport reactions can be 
integrated. To assist with the stoichiometric balancing of reactions, GEMsembler assesses 
the mass/charge balance of each reaction with the metabolite formulas from the BiGG 
database, when available. If the reaction is unbalanced, but can be balanced with 
coefficients from the original models or by adding/removing hydrogen, the stoichiome­
try is changed accordingly.

Analysis of the network topology and function

Once the supermodel is created and the consensus models are built, GEMsembler can 
be used to perform network topology and functional analysis. For the topology-deter­
mined pathway search, we adapted the MetQuest package (29). It needs a path to the 
XML model file as input, formulation of the growth medium with nutritional sources 
as a configuration file, and some other optional parameters, for example, a list of 
metabolites of interest to extract corresponding pathways separately. MetQuest searches 
for all possible paths below a certain length between the medium components and 
all metabolites that can be reached using only already available compounds. For an 
input network with over a thousand metabolites and reactions, such calculations could 
require >16 GB of RAM (we recommend allocating at least 32 GB of RAM). Therefore, this 
path search is implemented as a separate “pathsfinding” module, which enables the user 
to run it on a high-performance cluster, if available. In this work, we ran the “pathsfind-
ing” module using the EMBL Heidelberg HPC cluster (60). As output, the “pathsfinding” 
module generates a large dictionary with all possible biosynthesis pathways under the 
certain length in the model in the HDF5 “metquest.h5” file, and a “shortest_paths.pkl” file 
with a smaller dictionary with three shortest paths (by default) for each metabolite in the 
model, or metabolites of interest, if specified. Such topological “pathsfinding” outputs for 
several original and consensus models can be analyzed and summarized together with 
the “run_metquest_results_analysis” GEMsembler function.

To perform functional analysis of the networks, the FBA and pFBA functions from 
the COBRApy package are used. Specifically, the culture medium has to be provided 
to simulate growth and production of all components of the biomass reaction or of 
metabolites of interest provided by the user. Production of a certain metabolite is 
considered when the flux through the demand reaction of the specified metabolite, 
introduced as an objective function for simulations, is higher than 0.001 mmol gDW

−1 

h−1. Reactions that carry flux higher than 0.001 mmol gDW
−1 h−1 in the corresponding 

pFBA results define a biosynthesis pathway for this metabolite. This biosynthesis analysis, 
together with further summary and analysis for a dictionary of models, is implemented in 
the “run_growth_full_flux_analysis” GEMsembler function.

Another type of network analysis implemented in GEMsembler with the 
“get_met_neighborhood” function calculates and visualizes the neighborhood within 
a number of reactions, which are selected by the user, starting from a given metabolite. 
This functionality is also used to calculate reactions’ distance from the biosynthesis 
product of the corresponding pathway.

As the output, GEMsember functions “run_metquest_results_analysis” and 
“run_growth_full_flux_analysis” generate summary production and pathway agreement 
plots/tables for metabolites of interest in all models. These functions also generate sets 
of corresponding tables that contain identified paths, as well as interactive network 
maps built with networkx (version 3.3) (61) and pyvis (version 0.3.2) (62) libraries.

Input models reconstruction, supermodel, and consensus models generation 
for E. coli and L. plantarum

For the use case analysis, the draft models of L. plantarum WCFS1 (LP) and E. coli 
BW25113 (EC) were reconstructed with CarveMe and gapseq command-line tools 
and modelSEED web server. We used protein sequences for CarveMe and model­
SEED and nucleotide sequences for gapseq. For L. plantarum, we used assembly 
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GCF_000203855.3, and for E. coli, since we reconstructed models from scratch, we 
used the genome sequence of the strain BW25113, for which gene essentiality 
data were generated, available from the KEIO collection at https://fit.genomics.lbl.gov/
cgi-bin/org.cgi?orgId=Keio. We used gram-specific templates for the models and 
default gap-filling without specifying any media. We also downloaded models for 
the species from the AGORA2 collection (13) at https://www.vmh.life/files/reconstruc-
tions/AGORA2/version2.01/sbml_files/individual_reconstructions/. As genomes were 
not available for the AGORA2 collection, we used the genome from AGORA1 
(https://www.vmh.life/files/reconstructions/AGORA/genomes/AGORA-Genomes.zip) for 
L. plantarum, and the genome from assembly GCF_000750555.1 for E. coli, as it fits 
to the AGORA2 model in terms of gene IDs, after selecting for locus tags (https://
ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/750/555/GCF_000750555.1_ASM75055v1/
GCF_000750555.1_ASM75055v1_cds_from_genomic.fna.gz).

First, for both organisms, the input models were converted with the “Gather­
edModels” class and its “run” method. Next, two supermodels were assembled 
with the “assemble_supermodel” method of the “GatheredModels” class: one is the 
default with “do_mix_conv_notconv” set to False, and the other one is mixed with 
“do_mix_conv_notconv” set to True parameter. Finally, in both cases, consensus models 
were created with the “get_all_confident_levels” method of supermodels and the 
“get_models_with_all_confidence_levels” function. These models were used further for 
the topological pathway analysis as well as for the growth and pFBA pathway analysis.

As a baseline for model comparison, we took four original AGORA, CarveMe, gapseq, 
and modelSEED models of L. plantarum or E. coli, converted to BiGG nomenclature with 
GEMsembler mixed approach without adding transport reactions, and automatically 
gap-filled on the minimal PMM5 media with the CarveMe tool gap-filling command. 
The number of gap-filled reactions added by CarveMe were 8, 0, 3, and 27 for AGORA, 
CarveMe, gapseq, and modelSEED L. plantarum’s models, and 0, 1, 1, and 19 for AGORA, 
CarveMe, gapseq, and modelSEED E. coli ’s model, respectively. Note that the CarveMe 
model for L. plantarum and the AGORA model for E. coli did not have to be gap-filled 
because they were able to grow in the tested media.

The biomass components for E. coli were taken from the “assembly” field, while for 
L. plantarum, the biomass components were taken from each of the original models 
and then modified according to the curation procedure below. The reason for the L. 
plantarum difference is that, when using the “assembly” biomass reaction, gap-filling of 
the original models was not feasible.

Model curation

The model curation consists of two major steps: (i) curation of the biomass reaction and 
(ii) curation of the biosynthesis pathways of the biomass components in a given growth 
medium. To decide which components of the biomass reaction to keep, a preliminary 
growth analysis and biomass component production analysis were performed using the 
original models converted to BiGG nomenclature with GEMsembler default and mixed 
approach. To decide which biomass components to include, we used the agreement 
score calculated by the GEMsembler “biomass” function to keep biomass components 
included by three or more models (Table S5). Several metabolites were exceptions to 
this rule. One of them is acyl carrier protein (ACP_c), which was included by three out 
of four models, but none of these models could produce it in the preliminary analysis 
(Table S8); therefore, we decided to exclude it. For E. coli, we removed vitamin B12 
(adenosylcobalamin adocbl_c), core oligosaccharide lipid Al (colipa_c), and phosphatidy­
lethanolamine (dioctadecanoyl, n-C18:0, pe180_c), which were included by three out of 
four models but not produced by either of them (Tables S5 and S8). We also considered 
metabolites with agreement by only one or two models, taking into account whether 
these metabolites can be produced by the corresponding models (Tables S5 and S8). 
We kept several low-confidence metabolites, such as lipids, because they are essential 
for biomass production, despite the large disagreements between the models. Two lipid 
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metabolites and siroheme for L. plantarum, as well as one lipid for E. coli, were removed 
because their biosynthesis pathways were long, non-linear, and present only in one 
model, therefore less likely to be present (Tables S5 and S8). Note that the biomass 
reaction selection process in GEMsembler is primarily based on the presence of the 
biomass components in each of the input models and whether production is achieved. 
Therefore, experimental validation would be necessary for the user to assess the list of 
biomass components and their corresponding coefficients to obtain a normalized and 
more accurate biomass reaction for the species of interest.

L. plantarum  and E. coli  core3 models were curated to produce all  biomass 
precursors with the following procedure. First,  for each biomass precursor that could 
not be produced by the core3 model, we checked the biosynthesis pathway maps 
from the core2 model or the original models that can produce the target metabolite. 
Then, we manually identified a small set of reactions missing in core3 that can 
restore the metabolite production, and we added these reactions. If,  according to 
the pathway map for the production of one biomass component, another one needs 
to be produced, the biosynthesis of the latter was curated first.  Transport reactions 
for common metabolites with agreement in less than three models identified during 
pathway maps exploration were added as well.  Finally, if,  after adding all  reactions 
from the functional biosynthesis pathway, the curated core3 model was not able to 
produce the metabolite, we compared reaction boundaries from the original models. 
For example, for ATP biosynthesis in L. plantarum,  we compared reaction boundaries 
between the core3 model and the CarveMe model, which could produce ATP, and 
found a discrepancy in phosphoribosylaminoimidazole carboxylase (AIRCr) reaction. 
Changing the reaction boundaries of the AIRCr reaction to bidirectional restored ATP 
production in the curated core3 model.

MEMOTE quality reports (40) were generated with the command “memote report 
snapshot.” The reports for four original input, four original output, and GEMsembler-
curated models per species are available in the git repository at https://git.embl.de/
grp-zimmermann-kogadeeva/GEMsembler_paper.

Comparison with the gold-standard models

As the gold-standard model for L. plantarum, we used the original iLP728 model (32). 
As the gold standard for E. coli, we used the iML1515 and iML1515a models published 
by Bernstein et al., which were adapted by the authors for the BW25113 strain by 
modifying the original iML1515 model built for the MG1655 strain (33) to account for 
the differences between the MG1655 and BW25113 strains (18). To assess the overall 
similarity with the gold-standard models for both L. plantarum and E. coli, we calculated 
how much each of the assessed models resembles the gold-standard one (recall) and 
how much the assessed models are confirmed by the gold-standard one (precision). For 
reaction-level similarity, we took all reactions from the gold-standard model and each of 
the assessed ones, and calculated the ratio of the number of intersecting reaction IDs to 
either the number of all reactions in the gold-standard model (recall) or the number of 
all reactions in the assessed model (precision). For gene-level similarity, we took a similar 
approach; however, we only compared genes if they were linked to the same reaction in 
the compared models (both GPRs from the compared models should contain the gene, 
but do not have to be the same). Therefore, genes that are included by both compared 
models but correspond to different reactions were not included in the precision and 
recall calculation.

Principal component analysis was performed on the reaction matrices to assess 
model similarity in a low-dimensional space. Reaction matrices were constructed based 
on the union of all reactions in all compared models (either non-gap-filled GEMsem­
bler-converted original models, consensus models, and the gold standard model; or 
gap-filled GEMsembler-converted original models, curated Core3 consensus model, and 
the gold-standard model). Principal component analysis was performed using the PCA 
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function from the Scikit-learn (version 1.5.1) Python library. Model projections to the first 
two principal components were plotted.

Auxotrophy prediction

For auxotrophy prediction in L. plantarum, we classified experimental growth in the 
CDPM media lacking each of the 35 components tested in (34) into three groups: growth 
(OD600 ≥ 1), no growth (OD600 ≤ 0.1), and reduced growth (OD600 between 0.1 and 1) 
(Fig. 4B). For three metabolites, the growth was modified according to the information 
provided in a previously published auxotrophy experiment (32). Specifically, the growth 
without isoleucine was set to zero (OD600 of 0 instead of OD600 0.2), because the authors 
reported that L. plantarum cannot produce isoleucine, but growth was observed due 
to trace elements remaining in the medium (32). Growth without phenylalanine and 
tyrosine was set to the reduced growth category (OD600 = 0.2 instead of OD600 = 0.1), 
because the authors reported that growth was noticeable in these conditions (32).

To predict auxotrophy with the modeling framework and compare it to the experi­
mental results, FBA was run while optimizing for biomass production as the objective 
function for each model in each condition where one of the tested nutrients was 
removed from the CDPM medium. The FBA prediction results were classified into growth 
[growth rate ≥ 1 h−1 [absolute threshold] or growth rate ≥ 0.85 of the maximum growth 
rate calculated in the unmodified CDPM medium of the corresponding model (relative 
threshold)], and no growth (growth rate ≤ 0.001 h−1 or rate ≤ 0.15 of the initial maximum 
growth rate in the unmodified CDPM medium). There were no cases with reduced 
growth prediction for any of the tested models.

Gene essentiality prediction

To test the models’ ability to predict gene essentiality, we used an experimental data set 
with the KEIO collection of gene knockout mutants in E. coli BW25113 (https://fit.genom-
ics.lbl.gov/cgi-bin/org.cgi?orgId=Keio) (41, 42), grown on minimal media including 
different carbon and nitrogen sources. This data set was previously compiled to 
evaluate four published curated models of E. coli MG1655, which were modified in 
the corresponding study to account for the differences between MG1655 and BW25113 
strains, and the latest curated model iML1515 was manually modified to improve gene 
essentiality predictions, resulting in the adjusted iML1515a model (18). For each gene 
and each condition, a fitness defect measure defined as the log2 fold change of growth 
compared to the wild type in that condition was available for 3,789 genes in 28 carbon 
sources and 13 nitrogen sources. We did not need to adjust our models to account for 
the strain differences since we used the BW25113 genome for model reconstruction; 
therefore, we directly followed the same gene essentiality prediction pipeline, predicting 
gene essentiality with COBRApy function “single_gene_deletion” for each of the tested 
models (four original models, curated core3 model, iML1515, and the adjusted iML1515a 
from the previous study where they were modified to match the differences in the 
BW25113 strain). We defined a gene as essential if the predicted growth rate was less 
than 0.001 h−1, and nonessential otherwise. We then sorted the genes according to the 
experimental fitness defect in increasing order and calculated precision-recall curves and 
their Area Under the Curve (AUCPR) with Scikit-learn (version 1.5.1) Python library. Note 
that for each model, we could calculate essentiality for a different number of genes, 
depending on how many genes from the experimental data set were included in the 
model. To make the essentiality prediction comparison more fair between the models, 
we used 15 out of 28 available carbon sources in the data set and 13 nitrogen sources 
on which all models could grow. For the experimental gene essentiality threshold used 
to calculate the number of improved predictions, we used a fitness defect of log2 fold 
change equal to −2, as used in the previous study (18).
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Improving gene essentiality prediction

To improve gene essentiality predictions for each of the tested models, we modified the 
GPR rules in each model following two approaches. In the first approach, we designed a 
stepwise GPR rule combination algorithm (SA) to use GPR rules from the other models 
for modification of the target model. The first step is to select the reactions for which 
GPR contains a gene with the wrong essentiality prediction in the target model. The 
next step is to modify the GPR rule by changing it to the GPR rule from a different 
model, in which the gene essentiality prediction was correct for that gene. If the GPR 
modification improved the essentiality prediction of the selected gene and did not affect 
the prediction for the correctly predicted genes by the target model, the GPR was kept. 
Otherwise, a GPR from a different model for the same reaction was tested. The models 
that were providing an alternative GPR were tested in the order of decreasing AUCPR.

As a second approach, we implemented a genetic algorithm (GA), which aims 
to find a GPR rule combination in the solution space that optimizes the AUCPR for 
gene essentiality prediction of the target model. The reactions of the input model are 
considered as genes in the chromosome, in the context of the genetic algorithm, if 
they have different GPR variants in some of the original or core3 models. Potential 
sources of GPR information were encoded as integers (0 for the input model itself, 
1 for core3, 2 for ag_EC, 3 for ga_EC, 4 for ca_EC, and 5 for mo_EC). Selecting one 
number (one GPR source) per reaction leads to a solution vector, and combining 
numbers for sources with different GPRs for all reactions forms the solution space 
for the algorithm. We search for a solution that leads to the highest AUCPR with 
PyGAD (version 3.4.0) Python package with the following parameters: “num_gener­
ations”: 50, “num_parents_mating”: 40, “sol_per_pop”: 200, “parent_selection_type”: 
“tournament,” “K_tournament”: 20, “keep_elitism”: 5, “crossover_type”: “two_points,” 
“mutation_type”: “random,” “mutation_by_replacement”: true, “mutation_probability”: 
0.05, “random_seed”: 42, “parallel_processing”: 100. The genetic algorithm optimization 
was executed on the EMBL Heidelberg HPC cluster (60). We also want to note that 
we encountered numerical accuracy issues when using the glpk solver package when 
running the “single_gene_deletion” function from the COBRApy package, which we 
resolved by using the cplex solver instead. To reduce the number of randomly introduced 
GPR changes, we intersected solutions from different generations, introducing only 
changes on which the last N generations agree. We started from the last one (N = 50), 
and tested the intersections of the GPRs with the previous generations in terms of the 
AUCPR, adding one previous generation at a time. The procedure was stopped when 
the resulting AUCPR decreased below the AUCPR of the 50th generation, rounded to the 
smaller value with second decimal precision.
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